
Combining two types of electricity generation into one textile paves the way for producing garments that could provide a source of energy to power devices such as smartphones or global positioning systems.
“This hybrid power textile presents a novel solution to charging devices in the field from something as simple as the wind blowing on a sunny day,” said Zhong Lin Wang, a Regents professor in the Georgia Tech School of Materials Science and Engineering.
To make the fabric, Wang’s team used a commercial textile machine to weave together solar cells constructed from lightweight polymer fibers with fiber-based triboelectric nanogenerators.
Triboelectric nanogenerators use a combination of the triboelectric effect and electrostatic induction to generate small amounts of electrical power from mechanical motion such as rotation, sliding or vibration.
Wang envisions that the new fabric, which is 320 micrometers thick woven together with strands of wool, could be integrated into tents, curtains or wearable garments.
“The fabric is highly flexible, breathable, lightweight and adaptable to a range of uses,” Wang said.
Fiber-based triboelectric nanogenerators capture the energy created when certain materials become electrically charged after they come into moving contact with a different material. For the sunlight-harvesting part of the fabric, Wang’s team used photoanodes made in a wire-shaped fashion that could be woven together with other fibers.
While early tests indicate the fabric can withstand repeated and rigorous use, researchers will be looking into its long-term durability. Next steps also include further optimizing the fabric for industrial applications, including developing proper encapsulation to protect the electrical components from rain and moisture.